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ABSTRACT 
We present a novel four-state method for measuring the polarization dependent wavelength shift (PDW) 
of a fiber Bragg grating.  We show that measurement of the grating’s wavelength for only four different 
polarization states is sufficient to completely determine the grating’s PDW, and we show favorable 
comparison of four-states PDW measurement results with results obtained using the conventional “all 
states” technique. 
 
1. Introduction  
Use of Bragg gratings in wavelength division multiplexed (WDM) systems with ever decreasing channel 
spacing and in sensor systems with ever increasing accuracy requirements has placed stringent demands 
on the absolute accuracy and stability of a grating’s wavelength.  The two largest effects on a grating’s 
wavelength: temperature and strain, are well understood and are often compensated by using active 
stabilization or athermal packaging.  It is more difficult to control the grating’s response to polarization, 
where the center wavelength of a grating can shift due to birefringence.  In systems using unpolarized 
light, or where polarization is maintained using polarization maintaining (PM) fiber, this is not an issue.  
However, where polarized lasers are used or PM fiber is impractical, the grating’s wavelength can wander 
with polarization.  It is therefore important to know a grating’s PDW if it is to be used in a system where 
wavelength accuracy is important.  In this paper we define PDW as the maximum wavelength shift of the 
grating’s spectrum that is induced by changes in polarization. 
 
The most straightforward means of determining a grating’s PDW is to monitor the wavelength shift of the 
grating’s reflection (or transmission) spectrum while randomly varying the polarization of the light at the 
grating until the polarization state space has been reasonably well covered.  A similar approach uses a 
large number of well-defined states uniformly distributed over the state space.  Unfortunately, the large 
number of individual measurements these “all states” techniques require make them time consuming, and 
therefore impractical in a manufacturing environment.  Furthermore these techniques can underestimate a 
grating’s PDW; they will more closely represent the true PDW as the state space is more completely 
covered.  The four-states technique described here allows a grating’s PDW to be completely determined 

with only four measurements, and does not 
underestimate the PDW.  This measurement 
technique can also be applied to the measurement 
of PDW for other types of wavelength-selective 
filters. 
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2. Theory 
The four-states technique assumes that PDW is 
caused by linear birefringence within the section of 
fiber containing the grating (Fig. 1).  This 
birefringence may be caused by any combination of 
several mechanisms, most notable being fiber core 

Figure 1:  Birefringent fiber core in the region of
the grating.  Λ is the physical pitch of the grating. 
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geometry or strain asymmetry, asymmetry inherent in grating side writing techniques [1], or asymmetry 
due to the polarization of the writing light [2].  This birefringence results in polarization dependence of 
the Bragg grating’s optical pitch, and thus the grating’s center wavelength.  Light polarized along the 
grating’s fast axis sees a shorter optical pitch, and thus a shorter Bragg wavelength, than light polarized 
along the slow axis. For the purposes of this paper we define the fast and slow axes as the eigenaxes of 
the grating, and polarization states that lie on these axes as the grating’s eigenstates.  The difference 
between the grating’s wavelengths for the two polarization eigenstates is the PDW of the grating.  
Arbitrarily polarized light has components along both the fast and slow axes, resulting in two spectral 
profiles shifted in wavelength with respect to each other.  If the PDW is less than the grating’s spectral 
width these two profiles overlap, resulting in a combined spectrum with a center wavelength somewhere 
between the fast axis and slow axis extremes.  To determine the combined spectrum’s wavelength shift 
verses polarization state, we modeled the grating’s spectrum as a combination of two spectra shifted with 
respect to each other by the PDW shift, and weighed these spectra in proportion to the E field strength on 
the grating’s eigenaxes for a given polarization state.  We then observed the combined spectrum’s 
wavelength shift as the model’s polarization state was varied, and found that the shift varied sinusoidally 

as the polarization evolved from the grating’s slow axis to its fast axis eigenstate [Fig. 2]. In theory a 
grating’s PDW can be determined by finding the shift in the grating’s center wavelength for the two 
polarization eigenstates.  In practice determining the grating’s eigenaxes is difficult, and furthermore any 
polarization state launched into the fiber may transform into some other, arbitrary state at the grating.  
With a suitable choice of four input polarization states, however, and assuming the unitary transformation 
between these input states and the states at the grating (i.e. the angular relationship between the states is 
preserved), in the absence of PDL and depolarization in the grating, we can determine the grating’s PDW 
as follows.   
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Figure 2A:  Modified Poincaré sphere at the 
grating.  The sphere is rotated with respect to 
conventional notation.  The grating’s mean 
wavelength is on the sphere’s equator. 

Figure 2B:  Variation of wavelength shift δλ with 
angle Φ.  ∆λ is the maximum shift and occurs when 
the polarization is on either the grating’s eigenaxes.  
The PDW for the grating is 2∆λ. 

 
To discuss the theory behind the four-states technique we enlist the following conventions [Figs. 2 and 3].  
We use modified Poincaré spheres S and S′, respectively to describe the polarization states si and si′ at the 
input end of the fiber and at the grating.  Our modified Poincaré sphere notation maps center wavelength 
rather than power onto the sphere’s surface.  Σ′ is an axis running through the grating’s eigenstates on the 
sphere S′, and Φsi′ is the angle between Σ′ and polarization state si′ on S′.  For the four input states we 
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choose two orthogonal states (for example s1 = linear horizontal and s2 = linear vertical) and two states 
displaced by 90° on S from the first two states and from each other (for example s3 = +45° linear and s4 = 
right circular).  An example showing this choice of four input states is shown in Fig. 3.  Notice that the 
four states laid out on the sphere resemble three mutually perpendicular unit basis vectors together with a 
fourth vector directed opposite to one of the other three.  These four input states si will evolve to four 
other states si′ at the grating.   
 
For each state si launched into the fiber we measure the center wavelength λsi′ of the grating’s reflection 
peak. From the average of wavelengths λs1′ and λs2′ given by the two orthogonal polarization states, we 

determine a mean wavelength λmean = 
(λs1′+λs2′)/2.  From this we determine δλsi′  
= λsi′-λmean, where δλsi′ is the shift from the 
mean wavelength for polarization state si′. 
Now, from Fig. 2 we see that 
δλsi′=∆λcosΦsi′, where ∆λ is the difference 
between the maximum wavelength and 
λmean.  Disregarding one of the two 
orthogonal states, and taking cosΦsi’ as 
direction cosines [3] between Σ′ and si′, we 
use the relationship cos2Φs2 + cos2Φs3 + 
cos2Φs4 = 1 [4] to get [(δλ′s2)2 + (δλ′s3)2 + 
(δλ′s4)2]1/2 =  ∆λ.  (We could just as easily 
use cosΦs1 instead of cosΦs2, and δλs1 
instead of δλs2.)  The PDW for the grating 
is 2∆λ. 
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Figure 3:  Poincaré spheres S at the input end of the fiber and S′ 
at the grating, showing evolution of input states si to states si′. 

 
3. Experimental Results 
We measured three gratings with different amounts of PDW using the four-states technique, and 
compared the results to “all states” measurements of the same gratings.  For the all states measurement 
we chose 26 states uniformly distributed about the sphere.  Each state’s measurement entailed setting a 
tunable diode laser’s polarization to the desired state using a pair of waveplates and scanning the laser’s 
wavelength across the grating’s reflection spectrum while monitoring the wavelength with a wavelength 
meter.  For each polarization state, we fitted the resulting plot of reflectance versus wavelength over the 
wavelength values ranging between the reflection spectrum’s FWHM points using a fourth order 
polynomial fit.  We found that the grating profiles were slightly asymmetric, leading to a slight difference 
between the profile’s center and extremum wavelengths.  Because the profile’s extremum is better 
defined than its center, we used the shift in the extremum of the fit vs. polarization state to determine the 
grating’s PDW. 
 
For the all-states technique we took the difference between the maximum and minimum wavelength 
returned by the 26 scans as the PDW.  This technique has the potential of under-determining the PDW by 
up to about 10 %, as dictated by how closely the launched states approach the fast and slow axes at the 
grating.  In addition to this there is an uncertainty in the all-states PDW of √2σ, where σ is the standard 
uncertainty in the extremum wavelength given by the polynomial fit.  For the four-states technique we 
determined the PDW as described in the previous section, and we calculate the PDW uncertainty to be 
about 2.5σ.  Both of these uncertainties are given using standard propagation of errors formalism. 
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The results for the three gratings are shown in Table 1.  We ran two trials on gratings 1 and 2, and four 
trials on grating 3 for both the four-states and all-states technique.  Gratings 1 and 2 have a standard 

uncertainty σ in their extrema of about 0.25 pm, leading 
to an uncertainty of about ± 0.6 pm for the four-states 
PDW, and about 0.4 pm for the all-states PDW.  Grating 
3 has a standard uncertainty σ of about 0.14 pm, leading 
to a predicted uncertainty in the four-states PDW of 
about 0.4 pm and in the all-states PDW of about 0.3 pm.  
For gratings 1 and 2 the 26-states results are lower than 
the four-states results by up to 8%, as expected for 
reasons stated above, and the four-states and all-states 
results agree for grating 3.    Also, the results for the two 
trials agree to within the expected uncertainties, 
indicating repeatability of the measurements. 

 

Table 1:  Comparison of 4-state and 26-state 
PDW results  
Grating Trial 26-states PDW 

(pm) 
4-states PDW 

(pm) 
1 1 

2 
30.7(4) 
29.8(4) 

32.3(6) 
31.6(6) 

2 1 
2 

8.1(4) 
7.9(4) 

8.8(6) 
8.5(6) 

3 1 
2 
3 
4 

1.0(3) 
1.1(3) 
1.1(3) 
1.1(3) 

0.9(4) 
1.0(4) 
0.9(4) 
1.3(4) 

5. Conclusion 
We have presented a four-states technique for measuring the polarization dependent wavelength shift of a 
fiber Bragg grating.  Although we describe measurement of a relatively narrow grating, this technique 
should be applicable to measuring shifts in the band-edge of WDM channel filter or similar wide-
bandwidth gratings. Furthermore, with suitable reference detectors, it could be generalized to include 
simultaneous measurement of polarization dependence in the reflectance, transmittance, or loss of the 
grating.   
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